If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2-10n-19=0
a = 6; b = -10; c = -19;
Δ = b2-4ac
Δ = -102-4·6·(-19)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{139}}{2*6}=\frac{10-2\sqrt{139}}{12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{139}}{2*6}=\frac{10+2\sqrt{139}}{12} $
| h=0,0+-16 | | h=8+-16 | | 11x+15x-6=46 | | 6x-12=204 | | 8x+3x+2=35 | | 60=16t-(t^2) | | (z+13)+(z+8)=61 | | 0.2x-0.4=0.3x+2 | | 2(m=3)=5(6-2m) | | 56=8/x | | 8x=-2(3-2x | | 2m-3/3=3m+1/6 | | 26.8s=187.6 | | 28=-12+4q | | v/5=7/17 | | 5(x-2)-4(2x+1)=-3x+3 | | -7(x+6)+5=-4-8x | | x/7=64/7 | | u/7=13/3 | | 2x+5x=160 | | T(n)=2n-8 | | 0.4x+3=1 | | 2y+2y+3y+3y+2+2=74 | | 2/k=-54 | | 5x+4x-1+x+3=102 | | 4=7/a | | 7=k+7 | | 7/3x+6/6x=36/9 | | -6=-7+f | | -1.4x=28 | | 7p-28=70 | | 6(x-5)(x+3)=0 |